Harmonization of the aerosol modeling in CAMS model and remote sensing approaches

<u>O. Dubovik¹</u>, P. Litvinov², T. Lapyonok¹, M. Momoi², C. Matar², A.

Lopatin², M. Herrera², G. Shuster³, B. Fougnie⁴, and J. Flemming⁵

1 - Univ. Lille, CNRS, UMR 8518 - LOA - Laboratoire d'Optique Atmosphérique, Lille, France
 2 - GRASP-SAS, Remote sensing developments, Lezennes, France,
 3- NASA/Langley, Hampton, USA 4- EUMETSAT, Darmstadt, Germany
 5 – ECMWF, Reading, UK

EUMETSAT

MIRA Webinar, on-line, 22 April 2024

ECMWF

Motivation:

aerosol assumptions are
= or
$$\neq$$

Gap between aerosol modelling approaches used in different remote sensing algorithms and in the global climate models.

Aerosol components and bins (tracers)

CAMS

MERRA-2

MERRA-2

Natural Run

BC HydrophobicHydrophobicXXHydrophobic- (X: in new cycle)XXP HydrophobicXXXHydrophobicXXXHydrophobicXXXHydrophobicXXXHydrophobicXXXHydrophobicXXXHydrophobicXXXHydrophobicXXXHydrophobicXXXHydrophobicXXXSubstructureXXXSeafatXXXSeafatAXXSeafatAXXSeafatAXXSeafatAXXSeafatXXXSeafatXXXSeafatXXXSeafatXXXSeafatXXXSeafatXXXSeafatXXXSeafatXXXSeafatXXXSeafatXXXSeafatXXXSeafatXXXSeafatXXXSeafatXXXSeafatXXXSeafatXXXSeafatXXXSeafatXX <t< th=""><th></th><th>Aeroso</th><th></th><th>CAMS</th><th>MERRA-2</th><th>MERRA-2 Natural Run</th></t<>		Aeroso		CAMS	MERRA-2	MERRA-2 Natural Run
Hydrophilic• (X: in new cycle)XXPMHydropholicXXXHydrophilicXXXHydrophilicXXXSeSU Hy-philicXXXSeSaltXXXXXSeSalt1XXXXXSeSalt2XXXXXSeaSalt3XXXXXSeaSalt5Salt3XXXDust1XXXXDust2XXXXDust4XXXXDust5SSXXDust5SSXX<	L	BC	Hydrophobic	X	X	X
PMHydrophobicXXXHydrophilicXXXBSUHy-philicXXXASubsectionXXXASeaSalt1XXXSeaSalt2XXXXSeaSalt3XXXXSeaSalt5-XXXSubsectionXXXXSeaSalt5-XXXDust2XXXXDust3XXXXDust4-XXXDust5-XXX			Hydrophilic	- (X: in new cycle)	X	X
HydrophilicXXXSU Hyt-philicXXXASeaSalt1XXSeaSalt2XXXSeaSalt3XXXSeaSalt3XXXSeaSalt3XXXSeaSalt3XXXSeaSalt3AXXSeaSalt3AXXSeaSalt3AXXSeaSalt5-XXSeaSalt5AXXDust1XXXDust2XXXDust4-XXDust5-XX	2	ОМ	Hydrophobic	X	X	X
BSU HyJ-rphilicXXXSeaSalt1XXXSeaSalt1XXXSeaSalt2XXXSeaSalt3XXXSeaSalt4-XXSeaSalt5-XXDust1XXXDust3XXXDust4-XXDust5-XXXXXX			Hydrophilic	X	X	X
A No Sea SaltSeaSalt1XXXSeaSalt2XXXXSeaSalt3XXXXSeaSalt3-XXXSeaSalt5-XXXDust1XXXXDust2XXXXDust4-XXXDust5-XXXDust5-XXXX-XXXX-XXXX-XXX	3	SU Hyd	lrophilic	X	X	X
Sea Salt PubleSeaSalt2XXXSeaSalt3XXXXSeaSalt4XXXSeaSalt5XXXDust1XXXXDust2XXXXDust3XXXDust4XXXDust5XXX	ļ	Sea Salt Hydro	SeaSalt1	Х	Х	Х
Salt Hydro philicSeaSalt3XXXSeaSaltXXSeaSalt5XXSeaSalt5XXDust1XXXDust2XXXDust3XXXDust4XXDust5-XX			SeaSalt2	Х	Х	Х
Hydro philicSeaSaltXXSeaSalt5-XXXDust1XXXXDust2XXXXDust3XXXXDust5-XXX			SeaSalt3	Х	Х	Х
PrincSeaSalt5-XXSeaSalt5Image: SeaSalt5Image: SeaSalt5XXDust1XXXXDust2XXXXDust3XXXXDust4-XXXDust5-XXX			SeaSalt	-	Х	Х
Dust1XXXDust2XXXDust3XXXDust4-XXDust5-XX		pniic	SeaSalt5	-	X	X
Dust2XXXDust3XXXDust4-XXDust5-XX		Dust	Dust1	X	Х	X
DustDust3XXXDust4-XXXDust5-XX3			Dust2	X	Х	X
Dust4 - X X Dust5 - X X 3			Dust3	X	Х	X
Dust5 - X X 3			Dust4	-	X	X
			Dust5	-	Х	Х з

Aerosol representation in *Remote Sensing*

AERONET retrieval http://aeronet.gsfc.nasa.gov

Flux measurements Direct - λ =340, 380, 440, 500, 670, 870, 940, 1020 nm Diffuse - λ =440, 670, 870, 1020 nm (alm, pp, pol)

Calibration and processing information

Smirnov et al. *RSE*, 2000

Holben et al.

RSE, 1998

Holben et al.

JGR, 2001

Eck et al. *JGR*, 1999

Dubovik and King JGR, 2000 Dubovik et al. JGR, 2000 GRL, 2002, JGR 2006 **Cloud screening and quality control**

Aerosol optical depth and perceptible water computations

Inversion products

Volume size distribution ($0.05 < R < 15 \mu m$), refractive index, single scattering albedo (λ =440, 670, 870, 1020 nm), fraction of spherical particles Aerosol is driven by 31 variables in AERONET retrieval :

dV/lnr - size distribution (~22 values); n(λ) and k(λ) - ref. index (4 +4 values) C_{spher} (%) - spherical fraction (1 value)

GRASP: Generalized Retrieval of Atmosphere and Surface Properties

GRASP is advanced algorithm for retrieval of aerosol, gas and surface properties from diverse remote sensing observations and any combination of them based on:

Forward Model for rigorous simulation of atm. radiation. + *Inversion* with *applying multiple a priori* constraints

Dubovik et al. "A Comprehensive Description of Multi-Term LSM for Applying Multiple a Priori Constraints in Problems of Atmospheric Remote Sensing: GRASP Algorithm, Concept, and Applications", Front. Remote Sens., 2021

GRASP: Generalized Retrieval of Atmosphere and Surface Properties

GRASP is advanced algorithm for retrieval of aerosol, gas and surface properties from diverse remote sensing observations and any combination of them based on:

Forward Model for rigorous simulation of atm. radiation. + *Inversion* with *applying multiple a priori* constraints

Dubovik et al. "A Comprehensive Description of Multi-Term LSM for Applying Multiple a Priori Constraints in Problems of Atmospheric Remote Sensing: GRASP Algorithm, Concept, and Applications", Front. Remote Sens., 2021

Angular aspects of different observations

POLDER/PARASOL 2004-2013 4 products Chen et al., 2020 Li et al., 2019 Zhang et al. 2021

<u>AEROSOL</u>: AOD spectral, AOD fine/coarse, Angstrom, SSA, AAOD,

aerosol height, spectral complex index of refraction, sphericity fraction.

< GRASP

Dubovik et al. 2021

<u>SURFACE</u>: land BRDF spectral, BPDF spectral; ocean wind speed and water leaving radiances, etc.

Important features of GRASP retrieval:

- Globally the same initial guess for aerosol;
- Globally the same set of a priori constraints;
- No location specific assumptions;
- Retrieval on 6 km resolution, no averaging;
- Surface retrieved simultaneously

Aerosol model in **GRASP**:

Multi-component mixture of spheres and randomly oriented spheroids

Aerosol modeling approaches in **GRASP**

1. GRASP 5 aerosol models approach (Lopatin et al., AMT, 2021)

- 1. Aerosol component concentration
- 2. Total concentration

2. GRASP 5LN bins: Full Microphysics approach (Dubovik et al., 2011, 2021)

- 1. 5 LNBins
- 2. Total Concentration
- 3. Non-spherisity
- 4. Spectral CRI

3. GRASP 5LN Chemical Component approach (L. Li et al., ACP, 2019)

- 1. 5 LNBins
- 2. Non-spherisity
- 3. Chemical Components mixture

4. GRASP 22 bins: Full Microphysics approach

- 1. 22 Triangular bins
- 2. Total Concentration
- 3. Non-spherisity
- 4. Spectral CRI

Evolution: GRASP Component approach

of components, GRASP/ *Component approach* provides consistent and stable results for AOD as well as detailed properties.

Automne 2008

Coarse mode

Example of chemical composition retrieval

Black Carbon mass concentration(mg/m²) in January 2008

Emission retrievals – Chen et al. (2018, 2019, 2022)

Baseline **GRASP** aerosol model with 2 modes for

3MI, MAP/CO2M and other sensors

Wavelength / un

Baseline GRASP 2 modes approach PARASOL retrievals

TEST-1: Nature run retrieval

Comparison « reality » vs retrieval

Synthetic dataset

Based on CAMS aerosol model

- Pressure, Relative, humidity profiles
- Mass mixing ratio
- 11 aerosol tracers and level concentration for 5 aerosol species : Sulphate (SU), Desert dust (DU), Sea Salt (SS), Organic (OC) and Black Carbon (BC)

· 1.0

0.95

0.9

0.85

0.8

0.75

Size distribution in CAMS/MERRA-2 versus GRASP

• The way of cutting the size distribution to define bins for Dust and Sea Salt in CAMS looks very different from the one used in remote sensing retrieval where SD is smooth function.

Dust bins from CAMS (OC and up to cycle 47R3)

Dust tracer from MERRA2 Natural Run

Surface simulation: BRDF and BPDF

GRASP/Component approach performance

POLDER-3 retrieval (2008)

MERA-2 synthetic data inversion

TEST-2: reality test

Harmonization of remote sensing aerosol with aerosol in CAMS/MERRA-2:

Refractive indices for aerosol species

Real part of refactive index - DD

DD, Re(m)

GRASP

CAMS

MERRA-2

Refractive index harmonization: MERRA-2/CAMS BC and OM refractive index in GRASP

Refractive index harmonization: MERRA-2/CAMS BC and OM refractive index in GRASP

Dust and Sea Salt in different modes: statistic over AERONET stations

60

50

40

30

20

10

0 -

1.30

1.35

1.40

1.45

Re(m)

1.50

1.55

PDF

a. Re(m)

Summary on complex refractive index studies

Harmonization of the complex refractive index in GRASP and CAMS and MERRA-2 models showed:

Feasibility tests with real PARASOL data	Performance in AOD	Performance in AE	Performance in SSA
Adjustment of the complex refractive index of aerosol	Same quality	Same quality	Same quality

- ➤ Great agreement in synthetic retrieval;
- > <u>NO EFFECT</u> on optical properties retrieved from real PARASOL data;
- Overestimation of emission derived from retrieved optical properties retrieved from real PARASOL;

REDUNDENCY

1.1 3 aerosol modes: Hydrophilic and Hydrophobic **BC and BrC** in separate modes

3 aerosol modes: Hydrophilic and Hydrophobic **BC and BrC** in separate modes (performance on PARASOL measurements)

1.2 3 aerosol modes: Dust and Sea Salt in separate modes

Dust and **Sea Salt** in different modes: (performance on PARASOL measurements) Improved performance

Current status of harmonization:

- Harmonization of remote sensing and models is relatively straightforward.
- Rather clear relation between parameters can be set up.

Current Questions:

CAMS / MERRA-2:

- assumptions of species ref. indices ?; (BC - ?)
- variability of DD optical properties ?;
 (no variability in ref. index)
- non-sphericity of DD -?
- inhomogeneity of aerosol -? (externa vs internal, optics vs transport physics);

GRASP / remote sensing

- is **3 external modes optimal** ?; (there are redundant parameter for optics)
- which parameters should be in focus: (AOD (λ), AE, SSA(λ), AODF ?, else -?)
- which properties can be adapted from CAMS (aerosol profiles, profiles of relative humidity, etc.?)

No degradation of real retrieval from modification!

Aerosol models in CAMS/MERRA-2 and remote sensing

	Aerosol modelling approach	CAMS/MERRA-2	Optimal model for <u>multi-angular</u> <u>polarimetric</u> remote sensing	Single/bi- viewing imagers	Lidars
1	Aerosol modes and aerosol species	 5 aerosol species, 7 components: BC(2), OM(2), SU, SS(3-5), Dust (3-5) External mixture 	 5-7 aerosol species distributed in 2-3 different aerosol modes External, Internal or hybrid mixture 	• ? • ? • ?	· ? · ? · ?
2	Refractive index	Fixed for each dry specie	 Fixed for each component Can be retrieved from internal mixture or at each wavelength 	• ? • ?	· ? · ? · ?
3	Aerosol vertical profile	 Mass Mixing ratio for each tracer (bin) at each level Vertical dependence of aerosol characteristics with RH 	 1-3 concentration profiles 1: the same for all modes 2: different for fine and coarse modes 3: different for each aerosol mode 	• ? • ?	· ? · ? · ?
4	Size distribution/ Hygroscopicity	 SD for each aerosol bin SD parameters change with RH 	 Size distribution parameters A few bins for each of 1-3 modes 	• ? • ? • ?	• ? • ? • ?
5	Non-sphericity/ inhomogeneity	Not accounted yet	 May be accounted using different models 	?	• ? 31

Aerosol non-sphericity and inhomogeneity in remote sensing

Urban aerosol (Lille, France)

F. Unga, PhD thesis 2017, U. Lille

(f) Repr: faculty12-15-PH2 34 100 100 100 100

Derimian et al, ACP, 2017.

Desert aerosol (Senegal and Israel)

F. Unga, PhD thesis 2017, U. Lille https://theses.fr/2017LIL10023

Hexahedrons Saito et al., 2021 a,b

Coated soot

Model of fractal-like cluster of particles in the shell (under development in collaboration with V. Tyshkovets and L. Berdina)

M. Kahnert, Opt. Express 2017

Particle shape effects on the observations

 10^{4}

10³

102

10¹

10⁰

 10^{-1}

 $\tau_{sca}P_{11}$

33

Harmonization questions to answer:

1. Main aerosol component: BC, OM, SU, Sea Salt, Dust.

- ➤ How complete this representation of aerosol?
- > External, internal or hybrid mixture?
- > Optimal balance between complexity of aerosol preorientation and number of retrieved parameters in remote sensing.
- 2. The spectral dependence for each component.
 - ➤ How representative it is?
- 3. Vertical profile
 - > How reliable mass mixing ratio in CAMS and can it be used as a priori estimates in the retrieval?
 - > The effect of vertical dependence of aerosol characteristics vs column averaged properties.

4. SD for aerosol

- ➤ How representative and flexible it is in MERA/CAMS?
- > Retrieved SD in remote sensing vs prescribed with accounting for hygroscopic growth in MERA/CAMS
- 5. Non-sphericity and inhomogeneity in MERA/CAMS
 - > How important it is in CAMS and how it may affect the atmospheric radiance calculations
- 6. What are the main aerosol parameters for harmonization with MERA/CAMS?
 - ➢ AOD? What spectral bands? Fine mode AOD? Angstrom Exponent? SSA?

THANK YOU !